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SUMMARY

This paper describes the development and the testing of a CFD real gas �ow solver. In the �rst part
of the paper is the description of the analysis performed to de�ne the best approach to a real gas �ow
solver and the various solution considered. In the second part the various solution adopted are described,
in the last part of the paper the CFD solver tests are presented together with results. Copyright ? 2005
John Wiley & Sons, Ltd.

KEY WORDS: real gas; hybrid grid; LDFSS

1. INTRODUCTION

Aerodynamic analyses of turbine components are currently used by turbine manufacturers
to improve the performance of their products. CFD simulations are nowadays a common
practise in the design stage of a modern gas turbine. These numerical methods allow accurate
investigations of the complex aerodynamic problems of gas turbine components at reasonable
costs and also provide the designer with important details on the �ow patterns. It is the authors
opinion that further optimization of existing gas turbines e�ciency cannot be achieved without
the use of such detailed 3D aerodynamic investigations.
The demand for a reliable tool to study the aerodynamic behaviour of the component is

growing amongst steam turbine designers too. Nevertheless, the application of CFD to the
steam turbine area is still less widely spread than in the gas turbine �eld.
Undeniably, one of the main reasons for this delay is the lack of a proper model for the

steam physical properties since solvers are developed in most of the cases under the limiting
conditions of the perfect gas behaviour.
The aim of the present work is to provide an approach addressing this lack and a method

is presented for implementing a real gas model in a perfect gas Reynolds averaged Navier–

∗Correspondence to: Massimiliano Cirri, Dipartimento di Energetica ‘Sergio Stecco’, Facolt�a di Ingegneria,
Universit�a di Firenze, Via S. Marta 3, 50139 Firenze, Italy.

†E-mail: m.cirri@ing.uni�.it

Received 27 April 2004
Revised 16 December 2004

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 20 December 2004



932 M. CIRRI, P. ADAMI AND F. MARTELLI

Stokes (RANS) �ow solver. The solver considered is based on a 3D upwind unstructured �nite
volume method (FVM) with implicit time-marching for steady state �ow. In the following,
the real gas �ow solver will be described considering the modi�cations in the discretization
method, the implementation of the real �uid model and the treatment of boundary conditions
as well.

2. DISCRETIZATION METHOD

In the present work the real gas solver is developed from an existing and well-tested 3D
Navier–Stokes code for hybrid grids [1]. The spatial discretization is based on a cell centred
FVM that integrates the equations over the volume �i of every cell embodying the computa-
tional mesh:
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(G − F)ij · n�Aij (1)

Here F and G are the convective and di�usive �uxes of the equations, Q= {�; �V; �(e+V 2=2)}
the conservative variables, �Aij the face area. The pointer neigh(i) represents the group of
elements neighbouring the element i. The convective �ux of mass, momentum and energy
over the cell surfaces is computed numerically using an upwind scheme that consists of a
reconstruction, an evaluation and a limiting phase [2]. In the reconstruction phase (or projec-
tion step) the solution on both sides of a face (left and right) is computed from the known
average values of the two neighbouring elements. Second order accuracy of the discretization
method is ensured when the solution is linearly interpolated onto the face midpoint (ij) from
both the adjacent cell centres

Qij;L =Qi +∇Qi · r; Qij;R =Qj +∇Qj · r (2)

The gradient ∇Qi is evaluated by means of a least-squares approximation using a
computation molecule constituted by the element i, the elements j ∈ neigh(i) and the elements
k ∈ neigh( j). The least-squares approximation enables a uniform second order approximation
of the solution gradients throughout the whole grid despite the local cell type and shape [1].
The evolution phase computes the actual integral of convective �ux for mass, momentum end
energy across each face through a midpoint quadrature. The midpoint average convective �ux
is consistent with the interaction of the two left and right states computed by (2) according
to a 1D Riemann problem. This step is carried out using the approximate Riemann solver
suggested by Roe. A nonlinear slope limiting of the solution gradients is imposed on the
projection phase as suggested by Reference [2]. The whole discretization scheme is second
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order accurate in space and satis�es the monotonicity TVD requirements of the physical �ow.
The viscous �ux term is discretized by a conventional unbiased centred scheme. The steady
state time-marching approach is based on an implicit relaxed Newton method using an ILU(0)
preconditioned GMRes iterative scheme as linear solver [3]. The turbulence model is the
linear k–! two equation model by Wilcox improved with some recent developments concern-
ing the turbulence physical realizability [4].

2.1. Limits of the upwind method

When considering real gases, the main limit of the actual discretization scheme is represented
by the evaluation phase. In fact, by de�nition, the Roe’s scheme requires a linear relationship
among pressure, density and internal energy. Accordingly, an attempt to solve real gases
through this scheme is inconsistent and shows poor stability features arising as a consequence
of the actual nonlinear relation linking pressure, density and internal energy. In order to
overcome this problem a di�erent and more general upwinding approach has been selected in
the family of hybrid schemes.
The advantage of such hybrid schemes over the earlier Godunov-type approximate Riemann

solvers (as the Roe’s method) is the use of a separate treatment for the pressure waves and
for the convective �uxes. This separation let the scheme to be more general and insensitive
to the speci�c relationship linking the thermodynamic state variables (i.e. pressure, density
and energy). The hybrid schemes from the AUSM + (advection upstream splitting method)
family [5, 6] possess the necessary blend of robustness and accuracy required to be used with
a real gas equation. The AUSM schemes are based on the acoustic propagation of pressure
terms while a nonlinear law of the local Mach number is used for blending the left and
right convection terms. More precisely, the AUSM version named LDFSS(2) (low di�usion
�ux-splitting scheme) from Edwards [7] was chosen for the present application. This version
has the main advantage of a more stable resolution of shocks and �ow gradients even for
non-aligned grids. This last feature suggests the LDFSS(2) as the most suitable and promising
approach to be used with general unstructured grids.
The original LDFSS(2) has been reviewed for the present application assuming a quasi-1D

approximation normal to the faces allowing a straightforward implementation in the existing
FVM method. In this regard, the conserved variables are projected from adjacent cells onto
the face midpoint using the same linear reconstruction phase with slope limiting.

2.2. Flux evaluation: LDFSS(2)

The �ux evaluation is based on the splitting of the �ux (F) into pressure and convective
terms

F =Fc + Fp=�aMnF̃c + pF̃p (3)

F̃c=[1; ux; uy; uz; H ]T; F̃p=[0; nx; ny; nz; 0]T (4)

where � is the density, a the sound speed, ux, uy and uz are the three components of the
velocity vector and nx, ny and nz are the three components of the inter-element face normal.
In Equation (3), Mn is the normal Mach number. According to the proposed splitting the �nal
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convective and pressure �uxes on the interface ij between elements i and j take the form

Fc
ij = aij(�ij;LC+Fc̃

ij;L + �ij;RC−Fc̃
ij;R) (5)

Fp
ij = F̃p

ij(D
+
Lpij;L +D−

R pij;R) (6)

where the subscript L and R refer to the value projected on the face ij from left and
right, respectively. The coe�cients C+, C−, D+ and D− are nonlinear functions of the
Mach number whose values are de�ned in Reference [7]. In Equation (5) aij represents
the mean value of the sound speed: aij=(aij;L + aij;R)=2. The Mach number and pressure in
Equations (5) and (6) are evaluated from the equation of state for the gas.
The modi�ed upwind has been tested with the perfect gas model on transonic turbine

stages providing the same accuracy and robustness with respect to the original Roe’s scheme.
Nevertheless, the explicit presence of Mach number and pressure in the formulation of
LDFSS(2) eases the implementation of the real �uid model and, unlike the Roe’s scheme,
which strongly relies on the linearity of pressure and energy relation, it turns out to be actually
independent of the perfect gas law.

3. REAL GAS EVALUATION METHOD

The method for the evaluation of the real gas state equation represents a relevant issue of the
solver. The main problem is to �nd a suitable method that has to be fast, accurate enough
for CFD computations and �exible for the use with general state equations. To the authors
knowledge (see for example References [8–10]) the possible approaches to this problem may
be grouped as: (a) direct function representation, (b) parametric general representation and
(c) look-up table algorithms. Bene�ts and main drawback for each of those will be brie�y
introduced in the following.

3.1. Direct function representation

It is the most straightforward approach and, being analytical, has the advantage of the greatest
numerical accuracy. It is actually an extension of the perfect gas model and therefore requires
little e�ort for the implementation in the solver.
The main drawback of this method is the low computational e�ciency and the very low

�exibility when changing the gas nature. The computational e�ciency may also be of great
concern since, depending on the actual law used, the computational e�ort added to compute
the gas state easily overwhelms the rest of the CFD solver. For example the number of
required ‘calls’ to the state equation may be as follows: 2 ‘calls’ for the �ux and 20 ‘calls’
for the Jacobian evaluation giving a total of 22 ‘calls’ for each internal face at every iteration.
The evaluation of pressure from density and temperature for steam using the relation given
in [11] needs to perform a summation over 56 powers and products. This approach undeniably
requires an extraordinary e�ort and in general cannot be accepted especially if compared to
the single product necessary for the perfect gas equation.
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3.2. Parametric general representation

In this approach the state equation is replaced by means of a parametric representation
(for example van der Waals equation) capable of approximating the real function up the
desired extent. This kind of approximation has the same advantages of the former solution,
but solves only partially the �exibility problems. Increasing the complexity of the representa-
tion to achieve a more general approach may again lead to high CPU costs.

3.3. Look-up table (LUT)

The LUT method is based on the discretization of the actual state equation onto a structured
mesh. This kind of approach allows us to use any real gas state equation or thermodynamic
database while cutting down the computational e�ort in the solver. The method is very �exible
and general at the price of a loss of accuracy and of higher memory storage.
The LUT method here considered is obtained mapping the thermodynamic plane onto an

evenly spaced grid in the conservative variables � (density) and e (internal static
energy). Using a piecewise bi-linear interpolation, all the gas state variables can be retrieved
continuously from the LUT for any combination of the primitive variables � and e. With this
approach, given a couple (�; e), the number of operations required to locate the proper cell in
the LUT is reduced to a couple of divisions and a rounding to integer: l= int((e−emin)=(�e)),
m= int((� − �min)=(��)).
The bi-linear interpolation de�nes the target state in terms of the local cell co-ordinate

 , �: p=(pl+1; m − pl;m) + (pl;m+1 − pl;m)�+ (pl+1; m+1 − pl+1; m − pl;m+1 +pl;m) �+pl;m.

The primitive variable � and e are selected for mapping the LUT since these are directly
available in the vector Q from the integration of the Navier–Stokes equations. The accuracy
loss using the LUT depends mainly on the grid dimensions used for the table and on the
interpolation algorithm. The bi-linear interpolation, proving to be e�cient and �exible, should
be kept. Accordingly, the accuracy can be raised up to the desired extent simply increment-
ing the number of divisions used in each primitive variable when mapping the LUT. In this
case it is worthwhile considering that the CPU cost of the gas model remains una�ected
while only the memory requirement increases for storing a larger table. This is a reasonable
cost and, for example, a steam table consisting of 1000× 1000 points has a total memory
usage of 22:8 Mb. For these reasons, the LUT approach has been implemented into the real
gas solver.
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4. ISSUES ON BOUNDARY CONDITIONS

Despite the higher computational e�ciency achieved by the LUT, this method has the main
drawback of a more complex implementation for the inverse evaluation. An example of inverse
evaluation occurs to retrieve � and e from the LUT given p (static pressure) and s (entropy) as
known quantities. Having de�ned the LUT by � and e, the greatest part of the computational
e�ort regarding the state equation is involved into the so-called direct evaluation, but several
situations still require an inverse evaluation: these situations are mainly in the boundary
conditions. The inverse evaluation can be performed iteratively starting from a guessed state
as: �n+1 =�n + ��n, en+1 = en + �en. In the present work a Newton’s algorithm has been
adopted; p̂ and ŝ being the variable de�ning the target gas state, the following linear system
is solved at each iteration to get �� and �e:{

p̂ − pn

ŝ − sn

}
=[J ] ·

{
��n

�en

}
(7)

The gradients in the Jacobian are readily known from the linear interpolation inside the
cell. Convergence is usually achieved within 3=4 iterations to a relative error of 10−4. The
undoubtedly higher cost for the inverse evaluation of LUT is limited to the boundary elements
only and the global computational e�ciency proved to be hardly a�ected. The boundary
conditions are H0, P0 and angle � at inlet, Twall, V =0 at walls, the static pressure at outlet.

5. TEST AND RESULTS

The real gas code has been validated successfully for gaseous hydrogen in a test nozzle and
it is routinely in use for the analysis of 3D steam turbine stages with satisfactory results. The
main drawback observed from the applications is that the state equation is represented by a
bounded range �–e in the thermodynamic plane. This has consequences on the convergence
speed and stability. More precisely, using an implicit time-marching approach, the solution
usually shows strong �uctuations before assessing on the convergence values as proved by
the mass error in Figure 1(c). During those �uctuations the thermodynamic state related to
the conservative variables can slip outside the prescribed range. This situation is unstable
and can be avoided with a low time-step (i.e. CFL) during the numerical transitory. Fur-
thermore, as shown in Figure 1(a), the shape of the LUT, being bounded by intervals of
constant � and e, is not optimal in the (t; s) thermodynamic plane for describing a turbine
expansion. This coverage of the thermodynamic plane is particularly prone to ‘out of range’
calls to the LUT for the late stages of a steam turbine especially if the expansion is not
below the saturation curve. This is not a common working condition and the limitation of
CFD usually satisfactorily. Anyway a proper treatment for handling out-of-range conditions is
performs needed to avoid the occurrence of this type of instability at least for badly shaped
or skewed cells of the grid. This has been achieved freezing the gas state of any point that
is falling outside the table to the nearest boundary value available in the LUT. In case of a
well-de�ned LUT table and using a stable transient time-step (i.e. CFL ∼ 5) the convergence
of the real gas code is very similar to that observed for the perfect gas case having the same
Courant number. This is proved also for a practical application, as shown by Figure 1(b),
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Figure 1. (a) Table in t–s plane; (b) residual convergence; and (c) mass convergence.
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Figure 2. (a) Mach; (b) Machis contours; and (c) isentropic Mach number pro�le.

considering the �rst turbine stage of a low pressure steam turbine for mechanical drive. In this
example the code has a satisfactory performance despite the complex geometry that includes
blade twist, lacing wire and tip leakage (Figure 2(a)). The stator is transonic and the expan-
sion line crosses the saturation point. From isentropic Mach number at midspan (Figure 2(c))
it is also argued that the perfect gas model performs very similar to the real gas case deliver-
ing also the same mass�ow within an error less than 1%. In Figure 2(b) and (c) is shown the
typical real gas midspan solution on the second LP turbine stage. Conversely from mass�ow
and Mach pro�les, computations using the real gas model allow a di�erent prediction of stage
e�ciency with respect to the perfect gas on the same grids. For the turbine stage presented
here, this di�erence is about 3% with the perfect gas underestimating the aerodynamic losses.

6. CONCLUSIONS

A real gas �ow solver has been developed from an existing code for perfect gases. The
upwind scheme LDFSS(2) has been implemented solving the stability problems observed for
real gases computations using Godunov-type upwinding. A look-up table approach has been
considered to represent the gas state equation showing it to be fast, �exible and accurate.
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The whole approach maintains a good convergence rate although some concern of stability
still remains. This has been attributed to the ‘out of range’ problem when accessing the LUT.
Proposed remedies are the use of reduced Courant numbers and the clipping of variables
outside the table. The boundary conditions require the use of inverse evaluation algorithms to
work with the LUT. The real gas solver does not provide high di�erences in the aerodynamic
�ow pattern, at least in the example reported, but allows a better prediction of the stage loss.
Improvements of the present approach should consider the phenomenon of steam condensation.
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